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The stability of a slowly diverging swirling jet
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The spatial evolution of small-amplitude unsteady disturbances of an axisymmetric
swirling jet is examined theoretically. The slow axial divergence of the jet mean flow
is accounted for by using the method of multiple scales and a consistent solution
for both the mean flow and unsteady disturbance is derived. Previous work by Lu &
Lele (1999) has considered the leading-order analysis, in which the modal eigenvalues
are determined from locally parallel theory, but the key feature of our analysis is
the solution of the next-order secularity condition for the axial variation of the
wave-envelope amplitude.

The swirling jet profile sustains two types of instability waves: the Kelvin–Helmholtz
instability associated with axial shear, and a centrifugal instability which arises due
to a decrease in circulation with radial distance. The evolution of the disturbance
axial wavenumber and envelope amplitude with downstream distance is calculated.
Numerical results show that the growth of the centrifugal mode is significantly
curtailed as a result of a rapidly decaying envelope amplitude. The shear instability
is significantly more amplified by the addition of swirl.

The general solution for the disturbance envelope amplitude breaks down at so-
called turning points. This is found to occur for a series of neutral propagating modes.
A rescaling in the vicinity of the turning point shows that the amplitude in this region
is governed by a parabolic cylinder equation. The modal amplitude is seen to decay
very significantly through this turning point, even though the mode is neutral to
leading order.

1. Introduction
Many natural and industrial fluid flows have strong vorticity. One type of vortical

flow which is of practical interest is the swirling jet, which has been shown to be
more unstable than its non-swirling counterpart. A particular application, where such
increased instability is desirable, is to add swirl to axisymmetric jets as a means of
mixing enhancement. This is particularly relevant to the renewed industrial interest
in scramjet engines (supersonic combustion ram jets) where the mixing of fuel and
oxidizer must occur over a short time. Since non-swirling jet flow tends to become
more stable with increased compressibility, the addition of swirl to these systems may
lead to more efficient combustion. Jet noise and jet-plume growth are further areas
motivating the study of compressible mixing layers.

A number of theoretical investigations into the effects of swirl on the instability of
axisymmetric jet flow have been undertaken. Khorrami (1995) showed, using temporal
linear stability analysis, how the presence of swirl could enhance instability growth
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rates and also give rise to regions of instability which are absent in a non-swirling
flow. The stabilizing effect of increasing Mach number was also found to be less
pronounced with the addition of swirl. As well as enhancing the axial shear, or
Kelvin–Helmholtz, instability the swirling jet can also support centrifugal instability
which arises due to a decrease in the circulation with radial distance.

Some investigators have used a basic analytical model of a swirling jet to study
instability characteristics. Martin & Meiburg (1994) studied a top-hat jet, with swirl
added in the form of free vortex flow inside the jet core and a second free vortex
in the external flow. They found that the type of instability favoured depends on
the difference between the inner and outer circulations. The absolute and convective
nature of instability in a similar family of swirling jets/wakes was investigated by
Loiseleux, Delbende & Huerre (2000). Centrifugally stabilizing or destabilizing swirl
differences were found to promote absolute instability. Lim & Redekopp (1998) also
studied absolute instability characteristics and included the effects of density variation.
One of the flows considered was an axial flow with solid-body rotation within the jet
core and a free vortex flow outside the core. The swirl velocity was permitted to be
discontinuous at the edge of the jet. Increases in the size of this discontinuity were
found to increase the absolute growth rate considerably. Changes in relative density
between the core and external flow were also found to affect the growth rate.

The influence of viscosity has been investigated by Sarasúa & Schifino (2000). Their
jet profile consisted of a top-hat axial flow with a non-rotating core and free vortex
flow outside the core. A numerical study revealed that viscous effects can induce
instability in regions that are stable in inviscid flows.

Experimental work by Naughton, Cattafesta & Settles (1997) on jets with variable
degrees of swirl and compressibility suggested that increases in entrainment of up to
60% could be achieved with the addition of swirl. Wu, Farokhi & Taghavi (1992)
also carried out some experimental work on a top-hat jet with solid-body rotation
inside the jet and free vortex flow outside the core, together with some theoretical
work aimed at developing an understanding of shear-layer control with swirl. Cutler,
Levey & Kraus (1995) describe an efficient method of generating swirling jets by
tangential injection, and also found increased mixing compared to non-swirling jets.

More recently Hu, Sun & Yin (2001) have carried out a direct numerical simulation
to study the dynamics of a temporally evolving swirling jet. Results suggested several
possible mechanisms for the enhancement of mixing by swirl, such as the radial
motion of vortex ring pairs, the rapid growth of streamwise vorticity and the creation
of three-dimensional small eddies.

Lu & Lele (1999) considered a slightly different form of swirling jet profile to those
described above, with the swirl velocity being confined to the region of the shear
layer, as might be the case if the swirl is induced by the introduction of tabs on the jet
nozzle. Another difference to previous theoretical work is that the axial evolution of
the jet mean flow was calculated using the boundary layer equations. Spatial instability
analysis was mainly restricted to the flow at a fixed axial location, but the effect of
the mean flow development on the instability characteristics was briefly discussed.
Again it was found that swirl significantly increases the maximum amplification rate
in incompressible flow, and that this effect is repeated when compressibility effects are
included. The disturbance energy was also analysed, and this showed that the shear in
the swirl component contributes to a significant proportion of the disturbance energy.

With the exception of Lu & Lele’s paper, existing theoretical work on swirling jets
has been restricted to parallel flows and simplified velocity profiles. In this paper, we
follow Lu & Lele, in that the axial development of the mean flow is included, and an
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explicit, consistent multiple-scales solution is derived for both the mean flow and the
disturbance. This then allows the prediction of both disturbance growth rates (as done
by Lu & Lele) and, importantly, envelope amplitudes as functions of axial distance.
The determination of the axial variation of the disturbance envelope amplitude is
not attempted in Lu & Lele, and is the principal contribution of the present paper.
The total amplitude of a mode depends on both the envelope amplitude and (for
non-neutral modes) on the integrated growth rate, and we will see subsequently
that the spatial evolution of the envelope amplitude can have a significant effect on
the behaviour of the mode. This type of analysis has been studied previously for
non-swirling jets and mixing layers by Bouthier (1972, 1973), Crighton & Gaster
(1976), Tam & Burton (1984a, b) and Tam & Morris (1980). The work by Tam and
co-investigators also considers sound generation by instability waves in non-parallel
axisymmetric jets and mixing layers.

The divergence of jet flows is an important factor to consider, because the resulting
instability characteristics show a significant departure from those predicted by the
parallel flow approximation. Close to the nozzle exit, where the shear layer is thin,
unstable waves grow rapidly. However, as they propagate downstream the mean flow
diverges, the growth rate is reduced and at some location downstream the waves
eventually become damped. Therefore the indefinite growth predicted by the parallel
flow approximation applied near the nozzle is curtailed. The envelope amplitude of
the disturbance also decays as the wave propagates downstream, and Tam & Burton
(1984a, b) demonstrate how this growth and decay of disturbance amplitude is a
significant factor in the radiation of sound. It is important to know whether the
enhanced growth rate in jet flows due to the addition of swirl is sustained when the
axial development of the base flow is accounted for. Non-parallel effects are included
by applying the WKB technique whereby a small parameter, ε� 1, is introduced
which characterizes the slow divergence of the jet. In fact, ε is the inverse of a typical
Reynolds number, so that viscous terms become confined to O(ε), and these effects
then contribute to the axial variation of the disturbance amplitude.

The general problem formulation is described in § 2, with the multiple-scales solution
for the mean flow in § 3. The method for obtaining the disturbance growth rate and
amplitude follows in § 4. Numerical results for a particular set of flow conditions at
the nozzle exit are given in § 5. The general solution for the disturbance amplitude
is found to break down under certain conditions and the method for removing the
singularity is described in § 6. Conclusions from the investigation are drawn in § 7.

2. Problem formulation
The spatial evolution of small-amplitude unsteady disturbances of an axisymmetric

supersonic swirling jet is investigated. At the nozzle exit the axial velocity has a ‘near-
top-hat’ profile with a narrow shear layer. Added to this is an azimuthal, or swirl,
velocity; numerical results will be presented for an initial swirl distribution in which
the swirl is mainly confined to the shear layer, but the analysis can be applied to a
much wider range of nozzle-exit axial and swirl profiles. The jet flow is assumed to be
weakly non-parallel so that the axial evolution can be studied using the WKB-type
of analysis.

The flow problem is formulated in terms of cylindrical coordinates (x, r, θ), and
within the WKB framework the flow field is governed by the compressible boundary-
layer equations. Throughout variables are non-dimensionalized using values on the
centreline (r = 0) at the nozzle exit (x = 0). The reference length, velocity, density and
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pressure scales are L∗, the vorticity thickness of the axial velocity, U∗, ρ∗ and ρ∗U∗2

respectively. The Reynolds number, based on the inner stream, is defined by

Re =
ρ∗U∗L∗

µ∗
, (1)

where µ∗ is the dynamic viscosity. All quantities marked with an asterisk are dimen-
sional.

Since the jet is assumed to be slowly varying it is convenient to introduce a slow
axial scale X = εx, where ε � 1 and is a measure of the divergence rate of the jet.
Under the assumption of slow divergence viscous effects are also restricted to O(ε)
such that ε = 1/Re.

The total flow field is expressed as the sum of a steady axisymmetric mean flow
and an unsteady disturbance field such that

[v, ρ, p,T](X, r, θ, t) = [V , D, P , T ](X, r) + [ṽ, ρ̃, p̃, τ̃](X, r, θ, t), (2)

where v is the velocity, ρ is the density, p the pressure and T the temperature.
The governing equations are linearized with respect to the unsteady disturbances,

giving rise to a set of linear equations for the disturbance field, and a set of nonlinear
equations for the steady mean flow.

3. Mean flow field
The mean flow velocity is given by

V = U(X, r; ε)ex + V (X, r; ε)er +W (X, r; ε)eθ, (3)

and a multiple-scales solution obtained by expanding in powers of ε.
From the steady continuity equation

∇ · (DV ) = 0, with
∂

∂x
= ε

∂

∂X
, (4)

it can be seen that O(ε) axial variations must be balanced by O(ε) radial variations.
This leads to the following expansions for the mean flow field:

U(X, r; ε) = U0(X, r) + O(ε2), (5)

V (X, r; ε) = εV1(X, r) + O(ε3), (6)

W (X, r; ε) = W0(X, r) + O(ε2), (7)

D(X, r; ε) = D0(X, r) + O(ε2), (8)

P (X, r; ε) = P0(X, r) + O(ε2), (9)

T (X, r; ε) = T0(X, r) + O(ε2). (10)

The leading-order mean flow is then governed by the steady continuity, momentum
and energy equations, together with the perfect gas assumption. The governing
equations and appropriate boundary conditions, given in Lu & Lele (1999), are

∂(D0U0)

∂X
+

1

r

∂(rD0V1)

∂r
= 0, (11)

D0U0

∂U0

∂X
+ D0V1

∂U0

∂r
= −∂P0

∂X
+

1

r

∂

∂r

(
µ0r

∂U0

∂r

)
, (12)
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D0W
2
0

r
=
∂P0

∂r
, (13)

D0U0

∂W0

∂X
+
D0V1

r

∂(rW0)

∂r
=

1

r2

∂

∂r

(
µ0r

3 ∂

∂r

W0

r

)
, (14)

D0U0

∂T0

∂X
+ D0V1

∂T

∂r
= (γ − 1)M2

(
U0

∂P0

∂X
+ V1

∂P0

∂r

)
+

1

rσ

∂

∂r

(
µ0r

∂T0

∂r

)
(15)

+ (γ − 1)M2µ0

[(
∂U0

∂r

)2

+

(
r
∂

∂r

W0

r

)2
]
, (16)

γM2P0 = D0T0, (17)

where γ is the ratio of specific heats. The Prandtl number, σ, and Mach number, M,
are defined as

σ =
µ∗C∗p
k∗

, M =
U∗

a∗
, (18)

where k∗ is the thermal conductivity, C∗p is the specific heat at constant pressure and
a∗ is the local speed of sound. Following White (1991) and Lu & Lele (1994) the
dynamic viscosity is assumed to be a function of temperature only and obeys a power
law

µ∗ ∝ (T ∗)n, (19)

where we take n = 0.67 for air.
The boundary conditions applied are

U0(X, r →∞) = U2,
∂U0

∂r
(X, r = 0) = 0, (20)

W0(X, r →∞) = 0, V1(X, r = 0) = 0, (21)

P0(X, r →∞) = P2, W0(X, r = 0) = 0, (22)

T0(X, r →∞) = T2,
∂T0

∂r
(X, r = 0) = 0, (23)

for given values of U2, P2 and T2.
The equations can be solved numerically given a prescribed set of conditions at the

nozzle exit. The solution for a particular set of initial conditions is described in § 5.

4. Disturbance field
Using the method of multiple scales the unsteady disturbance field is expressed in

terms of a slowly varying amplitude and axial wavenumber in the form

[ṽ, ρ̃, p̃, τ̃](X, r, θ, t; ε) = [v̂, ρ̂, p̂, τ̂](X, r; ε) exp

(
i

ε

∫ X

k(ξ) dξ + imθ − iωt

)
, (24)

where ω is the frequency, m is the (integer) azimuthal mode number and k is the axial
wavenumber. Partial derivatives with respect to x then become

∂

∂x
=

(
ik(X) + ε

∂

∂X

)
. (25)
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If v̂ = [û, v̂, ŵ], then the linearized equations governing the disturbance field, retaining
terms up to O(ε), are

Eρ̂+ D0

(
v̂

r
+
∂v̂

∂r
+ ikû+

imŵ

r

)
+ v̂

∂D0

∂r
= εf1(v̂, ρ̂, p̂, τ̂), (26)

D0

(
Eû+ v̂

∂U0

∂r

)
+ ikp̂ = εf2(v̂, ρ̂, p̂, τ̂), (27)

D0

(
Ev̂ − 2ŵW0

r

)
− ρ̂W 2

0

r
+
∂p̂

∂r
= εf3(v̂, ρ̂, p̂, τ̂), (28)

D0

(
Eŵ +

v̂W0

r
+ v̂

∂W0

∂r

)
+

imp̂

r
= εf4(v̂, ρ̂, p̂, τ̂), (29)

D0

(
Eτ̂+ v̂

∂T0

∂r

)
− (γ − 1)M2

(
Ep̂+ v̂

∂P0

∂r

)
= εf5(v̂, ρ̂, p̂, τ̂), (30)

γM2p̂− τ̂D0 − ρ̂T0 = 0, (31)

where E = i(kU0 + mW0/r
2 − ω) and the exact form of the functions f1, . . . , f5 are

given in the Appendix.
The complex amplitudes are now expanded in powers of ε such that

[v̂, ρ̂, p̂, τ̂](X, r; ε) =

∞∑
n=0

εn[v̂n, ρ̂n, p̂n, τ̂n](X, r). (32)

Substitution of (32) into (26)–(31) and equating terms of equal order in ε gives, after
some rearrangement, a series of equations for the pressure field of the form

Lp̂n = hn, (33)

where h0 = 0 and hn (n = 1, 2, . . .) depend on lower-order solutions. The linear
operator L is found in Stott & Duck (1994) and used by Lu & Lele (1999). It is
given in the Appendix together with the inhomogeneous terms hn. It should be noted
that the derivation is not strictly valid in the limit of vanishing k.

The boundary conditions for (33) are obtained by considering the form of the
equations as r → 0,∞. In these limits the leading-order equation reduces to a
modified Bessel equation as described by Lu & Lele (1999). It then becomes apparent
that hn → 0, and at all orders, (33) is reduced to the form

∂2p̂n

∂r2
+

1

r

∂p̂n

∂r
−
(
A2
j +

m2

r2

)
p̂n = 0, (34)

where

A2
j =

[
1− D

j
0

γP
j
0

(
U
j
0 − ω

k

)2

]
k2, (35)

and j = 1, 2 denotes values as r → 0,∞ respectively. In order to have bounded
solutions,

p̂n ∼ Im(A1r) as r → 0, (36)

p̂n ∼ Km(A2r) as r →∞, (37)
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where Im(Ajr) is the modified Bessel function of the first kind, and Km(Ajr) is the
modified Bessel function of the second kind. This asymptotic behaviour is described
in Lu & Lele (1999) for the leading-order problem. A solution satisfying both of these
conditions can only be found for certain values of k so that (33) is an eigenvalue
problem with eigenvalue k.

If p0 is a solution to the homogeneous problem in (33) then, since L does not
contain any X-derivatives, a general solution is

p̂0(X, r) = N(X)p0(X, r), (38)

where N(X) is an arbitrary function of X. Since all the other leading-order variables
(û0, v̂0, etc.) are related to p̂0 they also have this same arbitrary factor.

The function N(X) can be determined from the fact that the n = 1 equation in
(33) is solvable. The solvability condition is obtained by taking the inner product of
the n = 1 equation with the adjoint solution of the homogeneous problem (n = 0).
The operator L is not self-adjoint so that the adjoint operator is to be determined.
Since the problem is formulated in terms of cylindrical coordinates the inner product
is taken to be

〈A,B〉 =

∫ ∞
0

ABr dr, (39)

where the overbar denotes the complex conjugate.
WithL as defined in the Appendix, we find that the equation governing the adjoint

solution is

L†p†0 = 0, (40)

where

L† ≡ ∂2

∂r2
+

(
2

r
− R0 − R3 +

1

R2

∂R2

∂r

)
∂

∂r
+
∂R3

∂r

−R3

R2

∂R2

∂r
+ R0R3 − R1R3 −

(
∂

∂r
+

1

r

)(
R0 + R3 − 1

R2

∂R2

∂r

)
, (41)

and the functions Ri appear in the Appendix.
The boundary conditions for p†0 are similar to those for p̂0 since (40) reduces to a

similar form of Bessel’s equation to give

p
†
0 ∼ Im(A1r) as r → 0, (42)

p
†
0 ∼ Km(A2r) as r →∞. (43)

The solvability condition to determine N(X) is obtained from the relation

〈p†0,Lp̂1〉 = 〈L†p†0, p̂1〉, (44)

which reduces to

〈p†0, h1〉 = 0. (45)

The function h1 contains terms involving disturbances and axial derivatives of disturb-
ances, and can therefore be written in the form

h1(X, r) =
dN

dX
h11(X, r)−N(X)h12(X, r), (46)
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which means that (45) becomes

dN

dX

∫ ∞
0

p
†
0 h11(X, r)r dr −N(X)

∫ ∞
0

p
†
0 h12(X, r)r dr = 0, (47)

or

F(X)
dN

dX
= G(X)N(X). (48)

Thus

N(X) = N0 exp

(∫ X G(ξ)

F(ξ)
dξ

)
, (49)

where N0 is an arbitrary normalization constant.
The general solution (49) clearly becomes singular if F(X) = 0 at some values of

X. In order to remove the singularity a second scaling in X must be carried out,
which will be described in § 6.

The unsteady pressure field can be characterized by the axial wavenumber and the
cross-sectionally averaged envelope amplitude which is defined as

A(X) =

[∫ ∞
0

|p̂0(X, r)|2r dr

]1/2

. (50)

The combined variation in the eigenfunction, p0(X, r), the amplitude, N(X) and the
axial wavenumber can be expressed in terms of the function

B(X) = A(X) exp

(
−1

ε

∫ X

ki(ξ) dξ

)
, (51)

which provides a measure of the overall growth and physical variation in the unsteady
pressure with X.

5. Numerical results
In this section numerical results for instability waves of a particular jet flow are

presented. The first stage is to solve the governing mean flow equations (11)–(17)
numerically. The swirling jet profile at the nozzle exit is based on that studied by Lu
& Lele (1999) where the initial axial and azimuthal velocities specified at X = 0 are

U0 =
1 +U2

2
− 1−U2

2
tanh 2(r − R), (52)

W0 =
wmax

cosh2 2(r − R)
, (53)

with R the jet nozzle radius. The initial temperature profile is approximated by
the Crocco–Busemann relation (Young 1989) and the initial pressure is obtained by
integrating the radial momentum equation (13), using (17) to eliminate the density.

The governing equations are solved numerically following the method employed by
Lu & Lele (1999) which maps the equations from the semi-infinite domain r ∈ (0,∞)
to a finite domain η ∈ (0, 1). The equations are then discretized using the Crank–
Nicolson method. For further details on the computation the reader is referred to Lu
& Lele (1999).

The evolution of the mean flow components is shown in figure 1, where U2 = 0.5,
T2 = 1, R = 10, wmax = 1 and M = 1.6. The ratio of specific heats and Prandtl number
are taken throughout to be γ = 1.4202 and σ = 0.7 respectively. The swirl profile
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Figure 1. Mean flow solution: (a) U0, (b) W0, (c) T0, (d ) P0, (e) V1. Bold line denotes initial
X-station, dashed line: X = 0.1, dotted line: X = 0.3, solid line: X = 0.5, dash-dot line: X = 0.7.

spreads out and decreases in amplitude with downstream distance, and entrainment,
as expressed by the (negative) radial velocity εV1, also decreases downstream.

In determining the disturbance field we return to the semi-infinite domain and sub-
sequently truncate this at an outer radius of rout = 25. The leading-order disturbance
field is determined by the homogeneous eigenvalue problem in (33) which is solved
numerically using a Runge–Kutta integration scheme. Throughout the computation
the domain r ∈ [0, rout] is discretized using 10 000 equally spaced points and an
X-step of 0.002 used. This was found to be sufficient to ensure convergence of all
eigenfunctions and the final result for the amplitude. Initial guesses for the shooting
method were obtained based on the grid search method of Tam & Hu (1989).

For the spatial stability problem real values of ω and integer values of m are
specified and a complex value of k determined. Using the boundary conditions in
(36) and (37), and an initial estimate for k, the n = 0 equation in (33) is integrated
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from r near zero and for r large. The eigenvalue k is obtained by using Newton
iteration to match smoothly each of the solutions at some intermediate point. Once k
has been calculated the associated eigenfunctions determine the functions F(X) and
G(X) in (49). For symmetry reasons, and to compare results with Lu & Lele (1999),
m is restricted to positive integer values and ω is allowed to be positive or negative.
Therefore when ω > 0 modes are co-rotating with the swirl and when ω < 0 the
modes are counter-rotating.

The axisymmetric swirling jet supports two types of unstable mode. One is the
Kelvin–Helmholtz shear instability arising due to the axial velocity gradient, and is
present in a non-swirling jet. The second is a centrifugal mode which is present only
in swirling jet flows and becomes centrifugally unstable since rW0 decreases with r.

Tam & Burton (1984a, b) describe how the position of the trajectory of the eigen-
value in relation to the branch points of the argument A2 in (35) must be considered
for the calculation of damped modes and how this has implications for sound radia-
tion into the far field. The branch points of A2 lie at

ωM

1 +MU2

,
−ωM

1−MU2

, (54)

and the branch cuts run from the branch points towards the origin and along the
positive/negative imaginary axis respectively. Waves in the fourth quadrant of the
k-plane to the right of the branch point propagate with subsonic phase velocities
relative to the ambient sound speed. Those to the left of the branch point propagate
with supersonic phase velocities and it is these which radiate sound into the far field.
Typical trajectories are shown in figure 2 for different degrees of mean swirl. For
sufficiently high swirl the Kelvin–Helmholtz waves propagate with supersonic phase
velocities, but for the example shown, the trajectory crosses into the subsonic phase
velocity regime when wmax 6 0.2. The centrifugal mode, for the parameters chosen,
becomes stable when wmax 6 0.6 and the trajectories lie in the third quadrant away
from the branch cut. The growth rate of both modes decreases as the amount of swirl
decreases.

Generally the trajectories of the unstable modes lie in the region between the
branch points and run into the branch cut on the real axis as the mode becomes
neutrally stable, and the computation is stopped here. In order to continue into the
damped regime the method of matched asymptotic expansions must be applied, as
discussed by Tam & Morris (1980) and Tam & Burton (1984a, b). In practice the
problem of reaching the branch cut and finding the stable modes can be overcome
by analytically continuing the trajectory onto the second Riemann sheet of A2. Tam
& Morris (1984) and Tam & Burton (1984a, b) also discuss a second modification to
the numerical procedure which must be applied to determine the damped modes. A
critical point, rc, is the radius at which E(rc) = 0 and the integration contour must
always pass below this point. In the case of unstable modes the critical point lies in
the upper half of the complex r-plane and the integration contour can be taken along
the real axis. As the mode becomes more stable rc moves down and hits the real axis
when the mode is neutrally stable. When the mode is damped the critical point is
located in the lower half of the complex r-plane and the integration contour must
be deformed off the real axis. This is in general non-trivial owing to the fact that
the mean flow is obtained numerically and in order to determine the location of the
critical point it would be necessary to analytically continue the mean flow solutions
into the complex r-plane. This is not attempted here since the primary interest is
in the evolution of the modes in the unstable regime. Continuation into the stable



The stability of a slowly diverging swirling jet 399

0 0.1–0.1–0.2–0.3–0.4–0.5
kr

–0.5

–0.4

–0.3

–0.2

–0.1

0

ki

–0.5

–0.4

–0.3

–0.2

–0.1

0

ki

–5.44–5.48–5.52 –5.36–5.40
kr

wmax = 0.2

0.4

0.6

0.8

1.0 (a)

(b)

wmax = 0.7

0.8

0.9

1.0

Figure 2. Variation in trajectory of eigenvalues in the complex k-plane with degree of mean swirl.
Solid lines show the trajectory for a given mean swirl, the dashed lines indicate the X-location and
the bold line shows the location of the branch cut. (a) Shear mode m = 16, ω = 0.15, with the
X-location shown in steps of 0.05. The branch points lie at kr = 0.133 and kr = −1.2. (b) Centrifugal
mode m = 10, ω = −2.82, with the X-location shown in steps of 0.0075. The branch points are
located at kr = 15.6 and kr = −1.733. All curves start from X = 0, and in each case increasing X
is in the direction in which ki becomes less negative. The parameters used are M = 1.6, U2 = 0.5,
T2 = 1, R = 10, σ = 0.7.

region would be required, however, in order to determine the sound generated by the
instability waves as in Tam & Burton (1984a, b).

For a prescribed mean flow the stability of the system depends on four parameters,
ω,m,X and wmax, and so an exhaustive study across the whole parameter range is
beyond the scope of the paper. Attention is therefore restricted mainly to the evolution
of waves which are most instable at the nozzle exit. All results presented are for the
mean flow parameters M = 1.6, U2 = 0.5, T2 = 1, γ = 1.4202, σ = 0.7 and R = 10.

The first set of results concerns the Kelvin–Helmholtz shear mode where the
influence of wmax is also addressed. At the initial X-station the mode which is most
unstable is found to be m = 28, ω = 0.6425, and for each m co-rotating modes are
more unstable than counter-rotating ones. The downstream evolution of this mode,
and other azimuthal modes at frequencies which are most amplified at the nozzle exit,
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Figure 3. Eigenvalues for shear instability as a function of X at the frequency which gives the most
amplified mode at X = 0. (a) kr , (b) −ki. Dotted line: m = 10, ω = 2.12 (kr > 0, not shown); solid
line: m = 16, ω = 0.15; dash-dot line: m = 22, ω = 0.37; bold line: m = 28, ω = 0.6425; dashed
line: m = 14, ω = 0.01.

are given in figure 3. Non-parallel effects curtail the unlimited growth predicted by
the parallel flow approximation and the waves become more stable as they propagate
downstream. Although the Kelvin–Helmholtz wave with m = 28 is the most unstable
at the nozzle exit, other azimuthal wavenumbers have a slower rate of decay, and the
mode found to persist the furthest downstream is for m = 14. Note that for all values
of m the case of vanishing |k| is not encountered.

Figure 4(a) shows the cross-sectionally averaged envelope amplitudes for the modes
in figure 3. The function B(X) is plotted in figure 4(b) where a value of ε = 0.005
has been assumed. These results are dominated by the exponential factor in (51)
involving the growth rate and all curves reach a maximum at some value of X. By
differentiating (51) with respect to X it can be deduced that the maximum in B
arises for a weakly amplified mode. The results show that even though the envelope
amplitude A decreases quite rapidly, it is not sufficient to significantly attenuate the
growth of these unstable modes.

The effect of changing the degree of initial swirl on the m = 16 mode is shown in
figure 5, where as wmax is decreased both the magnitude of the unstable eigenvalue
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Figure 4. Evolution of the shear instability. (a) Cross-sectionally averaged amplitude normalized
to unity at the nozzle exit, (b) B(X) plotted on log scale. Dotted line: m = 10, ω = 2.12; solid line:
m = 16, ω = 0.15; dash-dot line: m = 22, ω = 0.37; bold line: m = 28, ω = 0.6425, dashed line:
m = 14, ω = 0.01.

and the overall growth envelopes decrease. An interesting observation is the shape
of the eigenvalue profiles at the nozzle exit (shown as an inset in figure 5a). These
have a bi-modal distribution with the most amplified frequency switching from one
maximum to the other between wmax = 0.8 and wmax = 0.6. The effect of this switching
in frequency is reflected in the more rapid decay in |ki| for values of wmax 6 0.6.

It should be noted that as wmax decreases, the azimuthal mode number which
persists furthest downstream also decreases, and the general trend in figure 5(b) is
not observed in all cases. The most amplified mode for this non-swirling jet occurs
when m = 0, and in this case even though |ki| is greater for the swirling jet, the overall
growth envelope is larger for the non-swirling jet. In summary though, adding swirl
to the axisymmetric jet results in much larger overall growth.

For the centrifugal instability only counter-rotating modes are unstable at the
initial X-station, and figure 6 shows the axial evolution of the eigenvalues at the most
amplified frequency when m = 10 and m = 16. In contrast to the Kelvin–Helmholtz
waves the mode which is most unstable at the nozzle exit remains the most unstable
as it propagates downstream, and is in agreement with the results in Lu & Lele (1999)
where the amplification rate was found to increase with m.
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Figure 5. Effect of wmax on the shear instability when m = 16. (a) −ki. Inset shows distribution
of eigenvalues with frequency at the nozzle exit, (b) B(X) plotted on log scale. Bold solid line:
wmax = 1, ω = 0.15; dashed line: wmax = 0.8, ω = −0.02; dotted line: wmax = 0.6, ω = 1.533;
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Figure 7(a) shows a much more rapid attenuation of A for the centrifugal mode
compared to the Kelvin–Helmholtz mode. This is reflected subsequently in the values
of B(X). A significant result here is that the decay in amplitude of the centrifugal mode
results in very little overall growth, despite the amplification rate being comparable
to that of the shear mode. Another feature in figure 7(b) is that the overall growth
of the m = 10 mode is greater than that for m = 16 despite the latter having more
unstable eigenvalues for all X. This is due to the faster decay in the amplitude A for
the higher value of m. In Lu & Lele (1999) it was suggested that viscous effects would
stabilize these modes for high values of m; here the inclusion of non-parallel (and
viscous) effects is found to have a stabilizing influence on the centrifugal mode, and
appears to give some support to this suggestion. We can conclude that the inclusion
of non-parallel effects significantly attenuates the instability growth for centrifugal
modes, and therefore presumably limits the contribution that these modes might make
to mixing.

The most amplified frequency for the centrifugal mode is particularly sensitive to
axial location (unlike the shear mode where the variation is less pronounced) and
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it would be interesting to know whether the trend set in figure 7 continues across
a range of frequencies. In order to ascertain this results have been calculated for a
number of frequencies which are unstable at the initial X-location. The evolution
and overall growth downstream for m = 10 and m = 16 are compared in figure 8.
This shows how the eigenvalues for the m = 16 mode propagate further downstream,
but the overall growth continues to be curtailed by the amplitude function leaving
the m = 10 mode more amplified. In both cases the greatest overall growth occurs
for frequencies which persist the longest, but the maximum envelope growth remains
significantly lower than that of the shear mode.

6. Turning-point analysis
A series of neutral propagating modes is found to exist in the eigenvalue spectrum.

These propagate with subsonic phase velocity and lie on the real k-axis away from
the branch cuts discussed in the previous section, and thus pose no problem in
computation. Since these modes have a purely real wavenumber as they propagate
it is important to determine their envelope amplitude variation. In doing this it
was found that for the neutral modes with kr > 0 there is an axial location, Xt, at
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Figure 7. Evolution of the centrifugal instability. (a) Cross-sectionally averaged amplitude normal-
ized to unity at the nozzle exit, (b) B(X). Solid line: m = 16; ω = −3.77, dashed line: m = 10;
ω = −2.82.

which F(Xt) = 0 and so the general solution (49) for the envelope amplitude breaks
down. In order to remove the singularity, and obtain the slowly varying amplitude, a
rescaling of the axial coordinate must be carried out and terms of O(ε2) containing
second-order X-derivatives must be retained.

In general the functions F and G are complex, but for these neutral modes they are
dominated by their imaginary parts. The wavenumber variation for a particular mode
and the variation of Im{F}, when m = 16 and ω = 0.15, are shown in figure 9. Here
it can be seen that the axial wavenumber does not undergo any particular transition
when Im{F} passes through zero, unlike the case of turning points in slowly varying
duct flow where a mode is propagating, or cut on, on one side of the turning point and
evanescent, or cut off, on the other side. Figure 9(b) also shows that Im{F(X)} can
be approximated by a straight line in the vicinity of the turning point. The imaginary
part of G(X) is positive for all values of X.

A transformation of the axial coordinate is carried out to define X = X − Xt. If
higher-order terms are retained in the solvability condition (48) then this becomes

−iεH̃(X)Ñ ′′(X)− F̃(X)Ñ ′(X) + G̃(X)Ñ(X) = 0, (55)
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where F̃(X) = Im{F(X)}, etc. Primes denote differentiation with respect to X and
for this case the solvability condition is written such that F̃ , G̃ and H̃ are all real
functions. If an integrating factor is introduced such that

Ñ(X) = M(X) exp

(
i

2ε

∫ X F̃(ξ)

H̃(ξ)
dξ

)
, (56)

then (55) can be written in the form

ε2M ′′(X) = −
[
F̃2

4H̃2
+ iε

{
G̃

H̃
+

1

2

d

dX

(
F̃

H̃

)}]
M(X). (57)

This type of equation is discussed in Bender & Orszag (1978), and using the WKB
technique the general solution away from the turning point is

Ñ(X) = A1,2 exp

(∫ X [ iF̃(ξ)

εH̃(ξ)
− G̃(ξ)

F̃(ξ)

]
dξ

)(
H̃

F̃

)
+ B1,2 exp

(∫ X G̃(ξ)

F̃(ξ)
dξ

)
, (58)

where subscripts 1 and 2 refer to the regions X < 0 and X > 0 respectively. Since
G̃/F̃ > 0 when X > 0 we must have B2 = 0 to eliminate the exponentially growing
solution.

In the inner region close to the turning point the leading-order expansion of F̃(X),
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as shown in figure 9(b), can be expressed as

F̃(X) = a0X, a0 > 0. (59)

If the other functions are expanded about X = 0, such that G̃(0) = G0 and H̃(0) = H0

denote the values at the turning point, and the axial coordinate rescaled according to

X = ε1/2a−1/2e−iπ/4y, (60)

where a = a0/|H0| > 0, then the inner region is governed by the equation

d2M

dy2
+

(
ν +

1

2
− y2

4

)
M = 0, (61)

where ν = −1− G0/a0.
The general solution to (61) can be written in terms of parabolic cylinder functions,

as

M(y) = c1Dν(y) + c2Dν(−y). (62)
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Figure 10. Amplitude variation for the neutral mode shown in figure 9. The solid line is the
composite of the numerical outer solution and the inner solution given by the parabolic cylinder
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The constants A1,2, B1, c1 and c2 can be determined by asymptotic matching in the

appropriate limits. The outer solution (58) as X → 0± is matched to the inner solution
as y → ±∞. Using the asymptotic expansions of the parabolic cylinder functions (see
Bender & Orszag 1978) we find that

c2 = 0, (63)

A1,2 = −c1ae
iπν/2

(a
ε

)ν/2
, (64)

B1 =
−c1(2π)1/2e−iπ(5ν+1)/4

Γ(−ν)
(a
ε

)(−ν−1)/2

. (65)

The value of c1 is determined from some normalization condition.
Figure 10 returns to the standard axial variable X and shows the amplitude

(normalized to unity at the nozzle exit) for one of these neutral modes. The amplitude
decays very rapidly due to the fact that the values of G(X) are generally large and
positive. The decay in amplitude is much faster as it passes through the turning-point
region. In effect, the neutral modes are strongly attenuated and do not propagate far
downstream. It is found that viscous effects contribute most to this rapid decay in
amplitude. If all viscous terms are omitted from the unsteady disturbance equations
(specifically all the terms involving Tn

0 and Tn−1
0 ∂T0/∂r are omitted from f2−f5 in the

Appendix), then G0 is much smaller (ν less negative), which results in a much slower
decay in the amplitude of the neutral mode through the turning point. The effect of
including only terms due to slow axial variation is shown in figure 11. The neutral
mode still decays through the inner region, but now that the unsteady viscous and
thermal terms have been removed this can only be attributed to the axial variation in
the steady flow. Whether or not the unsteady terms are included, however, we can see
from figures 10 and 11 that a region of relatively short-scale variation is generated
around the turning point. In the absence of mean swirl these neutral modes are still
found to exist, but calculations suggest that the turning points are removed.
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Figure 11. Amplitude variation for the neutral mode shown in figure 9 with viscous terms omitted
from the disturbance analysis.

Tam & Burton (1984b), who did not include any unsteady viscous terms in their
unsteady analysis, concentrated on sound radiation into the far-field from unstable
modes which have much larger amplitudes than the neutral modes discussed in this
paper. For the neutral modes of the swirling jet, however, the faster decay through the
turning-point region may have an effect on the radiated sound field. In the absence of
viscous effects the amplitude variation is similar to a Heaviside function, H(x), centred
on the turning point, at least on the scale of the slow X variation. Tam & Burton
(1984b) derive a formula in which the directivity of the far-field noise is proportional
to the magnitude of the Fourier transform of the modal amplitude. From Lighthill
(1958) the Fourier transform of the Heaviside function is

1

2π

∫ ∞
−∞
H(x) e−iλx dx = 1

2
δ(λ)− i

2πλ
,

which indicates that a larger contribution to the noise from our neutral mode occurs
when λ ≈ 0. Comparison with Tam & Burton (1984b) identifies this with the sideline
direction, and suggests that increased sound radiation normal to the jet axis may be
observed as a result of the turning-point behaviour observed here.

7. Conclusions
There is some interest in the addition of swirl to jet flows as a means of mixing

enhancement. The majority of theoretical work to date has focused on either a
simplified analytical flow profile, or the parallel flow approximation with a fixed
profile assumed at every axial location. Here the important effect of the divergence
of the jet mean flow is included through numerical solution of the boundary-layer
equations. The slow divergence of the jet and the subsequent reduction and spreading
of the swirl component has a large effect on the instability growth rate. Numerical
results show that the two modes of instability (shear and centrifugal) are most unstable
at the nozzle exit and become less unstable as they propagate downstream. At some
axial location the modes become neutrally stable and then become damped further
downstream.

The growth rates of the two modes at the nozzle exit are comparable, but the
amplitude of the centrifugal mode is found to be more strongly attenuated than
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the shear mode. This decay in amplitude has a large counteractive effect on the
axial growth of the centrifugal instability, with the overall growth of the disturbance
restricted to quite modest values. In some cases the effect of the mean flow divergence
on the disturbance amplitude results in a suppression of the overall growth. For the
shear mode, however, the growth rate due to the axial wavenumber largely outweighs
the reduction in disturbance amplitude and there is significant growth. Changes in the
amount of initial swirl reveal the extent to which the growth of the shear instability is
enhanced by swirl and, importantly, how this is sustained when the axial development
of the mean flow is included. The existence of the centrifugal instability relies on there
being a sufficient amount of initial swirl. For both instability modes it is not generally
the mode which is most amplified at the start that persists the furthest downstream,
and the mode with the slowest rate of decay is found to produce the largest overall
amplitude. Results suggest that it is likely to be the shear mode that contributes most
to the enhanced mixing that has been observed in practice.

The general solution for the disturbance amplitude breaks down at so-called turning
points. This does not occur for the unstable modes discussed above, but does for a
series of neutral propagating modes. Since these modes are neutral, the slow axial
variation of the amplitude must be considered in order to determine to what extent
the mode can actually propagate. A rescaling in an inner region around the turning
point shows that the amplitude of the mode here is described in terms of parabolic
cylinder functions. Numerical results show that the amplitude of these modes decays
extremely rapidly, and as a result the disturbances do not propagate far downstream,
despite being nominally neutral.

Extensions to this work might be to investigate other forms of the initial swirl
distribution in order to determine an optimum swirl profile which maximizes the
overall growth of the shear instability and which is likely to generate the most
mixing enhancement. The spatial growth and decay of the disturbance amplitudes is
also significant for noise radiation associated with the instability wave. In order to
determine the near-field pressure distribution and the sound radiation into the far
field our analysis would need to be modified by applying the method of matched
asymptotic expansions (Tam & Burton 1984a, b) and calculating the amplitude of the
disturbances further downstream into the stable regime. As already indicated, this
is certainly possible in our analysis, although some significant numerical problems
would need to be overcome.

The work described in this paper is supported by a research grant from EPSRC,
reference GR/L80317.

Appendix
The terms on the right-hand side of (26)–(31) which contain non-parallel terms due

to slow axial variation and viscosity are defined as

f1(v̂, ρ̂, p̂, τ̂) = − ∂
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∂ŵ

∂X
+ V1

∂ŵ
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r2
+

2im

r2
v̂

+
im

3r2

(
1

r

∂

∂r
(rv̂) +

im

r
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∂ŵ

∂r
− ŵ
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The linear operator in (33) appears in Lu & Lele (1999) and is defined as

L ≡ ∂2

∂r2
+

(
R0 + R3 − 1

R2

∂R2

∂r

)
∂

∂r
+

(
∂R3

∂r
− R3

R2

∂R2

∂r
+ R0R3 − R1R2

)
, (A 6)

where

R0 =
1

r
+

1

γP0

∂P0

∂r
− ik

E

∂U0

∂r
− imW0

Er2
− im

Er

∂W0

∂r
, (A 7)

R1 =
E

γP0

+
k2

ED0

+
m2

Er2D0

, (A 8)

R2 = D0E +
2D0W

2
0

Er2
+

2D0W0

Er

∂W0

∂r
+
W 2

0

Er

∂D0

∂r
− W 2

0D0

Er

1

γP0

∂P0

∂r
, (A 9)

R3 =
2imW0

Er2
− W 2

0D0

rγP0

, (A 10)

The inhomogeneous terms, hn, in (33) are given by

hn =
∂φn

∂r
− φn

R2

∂R2

∂r
+ R0φn − R2ψn, (A 11)
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where

φn = f3(ζn−1) +
2W0f4(ζn−1)

Er
− W0D0f5(ζn−1)

ErγP0

, (A 12)

ψn =
f5(ζn−1)

γP0

+
f1(ζn−1)

D0

− ikf2(ζn−1)

ED0

− imf4(ζn−1)

ErD0

, (A 13)

with ζn = [v̂n, ρ̂n, p̂n, τ̂n].

REFERENCES

Bender, C. M. & Orszag, S. A. 1978 Advanced Mathematical Methods for Scientists and Engineers.
McGraw-Hill.
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